Ниобиевые сплавы - определение. Что такое Ниобиевые сплавы
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

Что (кто) такое Ниобиевые сплавы - определение

СМЕСЬ МЕТАЛЛОВ
Сплавы; Сплавы (металлов)
Найдено результатов: 64
Ниобиевые сплавы      

сплавы на основе ниобия (См. Ниобий). Первые промышленные Н. с. появились в начале 50-х гг. 20 в., когда для новых областей техники потребовались материалы, способные работать при температурах выше 1000 °С. Наряду с высокой температурой плавления Н. с. обладают хорошими технологич. свойствами и низкой по сравнению со сплавами на основе др. тугоплавких металлов (Mo, W, Ta) плотностью. Предел хладноломкости малолегированных Н. с. находится ниже температуры жидкого азота. Все эти свойства дают возможность применять Н. с. для теплонагруженных деталей ракет, космических летательных аппаратов и самолётов специального назначения. Небольшое поперечное сечение захвата тепловых нейтронов и хорошая стойкость в контакте с жидкометаллическими теплоносителями делают Н. с. ценным конструкционным материалом атомных реакторов. Н. с. стойки в ряде кислот и др. химических реагентах. Однако Н. с. окисляются при нагреве на воздухе и в др. окислительных средах выше 400 °С, вследствие чего для работы в указанных условиях эти сплавы должны применяться с защитными покрытиями. При 1100 °С скорость окисления Н. с. на воздухе 30-120 г/(м2·ч) [нелегированного ниобия 300-350 г/(м2·ч)]. Н. с. с защитными покрытиями силицидного типа окисляются при 1100 °С со скоростью 0,2-0,4 г/(м2·ч). По физическим свойствам Н. с. мало отличаются от нелегированного ниобия. Сочетание низкого коэффициента линейного термического расширения (8,42·10-6 при нагреве от 20 до 1100 °С) и высокой теплопроводности [при 1100 °С ок. 59 вт/м·К), или 0,14 кал/сек·см °C)] обеспечивает крупным деталям из Н. с. с защитными покрытиями высокое сопротивление термической усталости.

Основные легирующие элементы Н. с. - Mo, W, V образуют с Nb непрерывный ряд твёрдых растворов, прочность которых выше, чем нелегированного ниобия; кроме того, Н. с. легируются Zr или Hf и С или N. Образующиеся в этом случае малорастворимые в твёрдом растворе высокостабильные карбиды и оксиды и в некоторых случаях оксикарбонитриды вызывают дополнительное упрочнение сплава в результате механического торможения его ползучести.

Модуль упругости Н. с. имеет невысокие значения (таблица), но не снижается с повышением температуры до 1100 °С. Предел длительной прочности за 100 ч при 1100 °С среднелегированных Н. с. (5-10\% W или 3-5\% Mo, 1-2\% Zr или Hf) 100-150 Мн/м2 (10-15 кгс/мм2), а высоколегированных Н. с. (15-20\% W или 10-15\% Mo, 1-2\% Zr или Hf, 0,1-0,4\% С) 280-300 Мн/м2 (28-30 кгс/мм2).

Механические свойства среднелегированных ниобиевых сплавов (средние значения) в горячедеформированном состоянии (степень деформации 70 - 75\%).

----------------------------------------------------------------------------------------------------------------------------------------------------------

| Температура | Модуль упругости | Предел прочности σв | Относительное |

| испытания °С |---------------------------------------------------------------------------------------------------| удлинение δ,\% |

| | Гн/м2 | кгс/мм2 | Мн/м2 | кгс/мм2 | |

|---------------------------------------------------------------------------------------------------------------------------------------------------------|

| 20 | 110-120 | 11000-12000 | 700-800 | 70-80 | 5-16 |

| 1100 | 110-120 | 11000-12000 | 450-500 | 45-50 | 15-30 |

----------------------------------------------------------------------------------------------------------------------------------------------------------

Н. с. получают путём плавки в вакуумных дуговых печах с расходуемым электродом, электроннолучевых и плазменных печах, обеспечивающих достаточную чистоту металла (главным образом по элементам внедрения - О, N, Н, С) для сохранения его пластичности. Первую деформацию Н. с. производят при 1200-1600 °С (нагрев в нейтральной среде, в вакууме или в обычной атмосфере печи при условии нанесения на нагреваемые полуфабрикаты специальных защитных эмалей). Деформацию полуфабрикатов в основном производят на воздухе (при 800-1200 °С). Для гомогенизации и дегазации слитки Н. с. подвергают вакуумному отжигу при 1500-2000 °С в течение 5-10 ч с последующим отжигом при 1300-1350 °С в течение 10 ч в вакууме (1·10-4 мм рт.ст. и выше). Для снятия напряжения деформированные полуфабрикаты Н. с. нагревают при 1000-1100 °С в течение 0,5-1 ч, а для рекристаллизации - при 1350-1450 °С в течение 0,5-1 ч. Освоена вакуумная прокатка листов.

Среднелегированные Н. с. хорошо обрабатываются давлением, из них готовят поковки, прессовки, штамповки, листы, фольгу и трубки различных размеров (вплоть до капилляров). Эти сплавы удовлетворительно обрабатываются резанием, свариваются аргонно-дуговой, контактной и электроннолучевой сваркой. Прочность сварного шва составляет не менее 90\% от прочности основного металла в рекристаллизованпом состоянии. Пластичность сварных соединений выражается углом загиба до появления первой трещины (на оправке с радиусом, равным толщине свариваемого листа) и составляет при аргонно-дуговой сварке в камере с нейтральной средой 120-180°. Среднелегированные Н. с. свариваются с малолегированными медными, титановыми и циркониевыми сплавами и паяются с др. металлами с применением специальных припоев.

Наряду с жаропрочными Н. с. важное значение приобрели сплавы Nb с Zr, Sn и Ti, являющиеся сверхпроводниками (См. Сверхпроводники). Критическая плотность тока Н. с. зависит от вида деформации, режима термической обработки и направления магнитного поля. Сверхпроводящие Н. с. применяются в мощных ускорителях, квантовых генераторах, отражателях горячей плазмы в термоядерных установках и т.д. Технология производства полуфабрикатов из сверхпроводящих Н. с. (проволока, лента, трубы и др.) сходна с технологией производства жаропрочных Н. с.

Лит.: Ниобий и его сплавы, Л., 1961; Тугоплавкие материалы в машиностроении. Справочник, под ред. А. Т. Туманова и К. И. Портного, М., 1967; Титц Т., Уилсон Дж., Тугоплавкие металлы и сплавы, пер. с англ., М., 1969.

Г. В. Захарова.

ЖАРОСТОЙКИЕ СПЛАВЫ         
  • Роллс-Ройс «Нин»]], экспонируемого в Музее науки, Лондон.
  • лопатка]] ротора турбины двигателя [[RB199]], из литейного никелевого жаропрочного сплава, бывшая в эксплуатации.
Суперсплавы; Тугоплавкие сплавы; Жаропрочный сплав; Жаростойкие сплавы; Окалиностойкие сплавы; Суперсплав
сплавы на никелевой, железной или железоникелевой основе, содержащие хром, кремний, алюминий, которые образуют (вместе с металлом основы) на поверхности сплава защитные оксидные пленки. Обладают повышенным сопротивлением химическому взаимодействию с газами при высоких температурах.
Жаропрочные сплавы         
  • Роллс-Ройс «Нин»]], экспонируемого в Музее науки, Лондон.
  • лопатка]] ротора турбины двигателя [[RB199]], из литейного никелевого жаропрочного сплава, бывшая в эксплуатации.
Суперсплавы; Тугоплавкие сплавы; Жаропрочный сплав; Жаростойкие сплавы; Окалиностойкие сплавы; Суперсплав

сплавы, имеющие высокое сопротивление ползучести и разрушению при высоких температурах. Применяются как конструкционный материал для деталей двигателей внутреннего сгорания, паровых и газовых турбин, реактивных двигателей, атомно-энергетических установок и др. Высокая Жаропрочность сплавов определяется двумя основными физическими факторами - прочностью межатомных связей в сплаве и его структурой. Обычно необходимую для высокой прочности структуру получают термической обработкой, приводящей к гетерогенизации микроструктуры, чаще всего дисперсионным твердением. В этом случае упрочнение обусловлено главным образом появлением в сплавах равномерно, распределённых весьма мелких частиц химических соединений (интерметаллидов, карбидов и др.) и микроискажениями кристаллической решётки основы сплава, вызванными наличием этих частиц. Соответствующая структура Ж. с. затрудняет образование и движение дислокаций (См. Дислокации), а также повышает количество связей между атомами, одновременно участвующими в сопротивлении деформации. С др. стороны, высокое значение величины межатомных связей позволяет сохранить необходимую структуру при высоких температурах длительное время.

Ж. с. по условиям службы можно разделить на 3 группы: сплавы, которые подвергаются значительным, но кратковременным (секунды - часы) механическим нагрузкам при высоких температурах; сплавы, которые находятся под нагрузкой при высоких температурах десятки и сотни часов; сплавы, которые предназначены для работы в условиях больших нагрузок и высоких температур в течение тысяч, десятков, а иногда сотен тысяч часов. В зависимости от этого существенно меняются требования к структуре сплава. Например, любая причина, обусловливающая неустойчивость структуры сплава при рабочих условиях, вызывает ускорение процессов деформирования и разрушения. Поэтому сплавы, предназначенные для длительной службы, подвергаются специальной стабилизирующей обработке, которая, хотя и может привести к некоторому снижению прочности при кратковременном нагружении, делает сплав более устойчивым к длительному воздействию нагрузок.

Ж. с. классифицируют по их основе: никелевые, железные, титановые, бериллиевые и др. Название по основе даёт представление об интервале рабочих температур, который в зависимости от приложенных нагрузок и длительности их действия составляет 0,4-0,8 температуры плавления основы. Разновидностью Ж. с. являются Композиционные материалы (сплавы, упрочнённые дисперсными частицами тугоплавких окислов или высокопрочными волокнами). Такие материалы характеризуются чрезвычайно высокой стабильностью свойств, мало зависящих от времени пребывания при высоких температурах. В зависимости от назначения Ж. с. изготовляют с повышенным сопротивлением усталости и эрозии, с малой чувствительностью к надрезам, термостойкие, для эксплуатации при значительных, но кратковременных нагрузках и др. Например, Ж. с., используемые в космической технике, должны иметь низкую испаряемость.

Лит.: Гарофало Ф., Законы ползучести и длительной прочности металлов и сплавов, пер. с англ., М., 1968; Курдюмов Г. В., Природа упрочненного состояния металлов, "Металловедение и термическая обработка металлов", 1960, № 10; Розенберг В. М., Ползучесть металлов, М., 1967; Химушин Ф. Ф., Жаропрочные стали и сплавы, 2 изд., М., 1969.

В. М. Розенберг.

Жаростойкие сплавы         
  • Роллс-Ройс «Нин»]], экспонируемого в Музее науки, Лондон.
  • лопатка]] ротора турбины двигателя [[RB199]], из литейного никелевого жаропрочного сплава, бывшая в эксплуатации.
Суперсплавы; Тугоплавкие сплавы; Жаропрочный сплав; Жаростойкие сплавы; Окалиностойкие сплавы; Суперсплав

окалиностойкие сплавы, металлические сплавы, стойкие против интенсивной коррозии на воздухе или в др. газовых средах при высоких температурах. Ж. с. применяются как конструкционный материал для слабо нагруженных деталей нагревательных устройств и энергетических установок, а также для изготовления нагревательных элементов сопротивления. Ж. с. имеют никелевую, железную или железо-никелевую основу и содержат до 30\% хрома. Некоторые Ж. с. легированы также алюминием или кремнием. При нагреве на их поверхности образуются плотные защитные плёнки, состоящие из продуктов взаимодействия компонентов Ж. с. с компонентами газовой среды. Как правило, это окисные плёнки с преимущественным содержанием окислов легирующих элементов (хрома, алюминия и др.), термодинамически более стойких, чем окислы элементов основы. Защитная роль плёнки зависит от её плотности и прочности сцепления с основным металлом.

Лит.: Игнатов Д. В., Шамгунова Р. Д., О механизме окисления сплавов на основе никеля и хрома, М., 1960; Эванс Ю. P., Коррозия и окисление металлов, пер. с англ., М., 1962.

Жаропрочные сплавы         
  • Роллс-Ройс «Нин»]], экспонируемого в Музее науки, Лондон.
  • лопатка]] ротора турбины двигателя [[RB199]], из литейного никелевого жаропрочного сплава, бывшая в эксплуатации.
Суперсплавы; Тугоплавкие сплавы; Жаропрочный сплав; Жаростойкие сплавы; Окалиностойкие сплавы; Суперсплав
Жаропрочные сплавы — металлические материалы, обладающие высоким сопротивлением пластической деформации и разрушению при действии высоких температур и окислительных сред. Начало систематических исследований жаропрочных сплавов приходится на конец 1930-х годов — период нового этапа в развитии авиации, связанного с появлением реактивной авиации и газотурбинных двигателей (ГТД).
ТВЕРДЫЕ СПЛАВЫ         
Твердые сплавы; Твёрдый сплав
материалы с высокими твердостью, прочностью, режущими и др. свойствами, сохраняющимися при нагреве до высоких температур. Различают литые и спеченные (металлокерамические) твердые сплавы. Последние получают методами порошковой металлургии из твердых карбидов металлов, сцементированных пластичным металлом-связкой.
Твёрдые сплавы         
Твердые сплавы; Твёрдый сплав
Твёрдые спла́вы — твёрдые и износостойкие металлокерамические и металлические материалы, способные сохранять эти свойства при В основном изготавливаются из твёрдых и тугоплавких материалов на основе карбидов вольфрама, титана, тантала, хрома, связанных кобальтовой или никелевой металлической связкой, при различном содержании кобальта или никеля.
Прецизионные сплавы         
  • Коэффициент теплового расширения сплавов железа/никель в зависимости от процентного содержания никеля. Ярко выраженный минимум при концентрации никеля 36 %
Инварные сплавы; Магнитно-твердые сплавы; Сплавы с заданными свойствами упругости; Сверхпроводящие сплавы; Термобиметаллы; ГОСТ 10994-74; Магнитно-мягкий сплав; Inovco; NILO; 42Н; Магнитно-мягкие материалы; Магнитно-твердые материалы; Сплавы прецизионные; Магнитно-твёрдые сплавы; Магнитно-твёрдые материалы; Прецизионный сплав
Прецизио́нные спла́вы (от  — точность) — группа сплавов с заданными физико-механическими свойствами. В эту группу, как правило, входят высоколегированные сплавы с точным химическим составом.
Прецизионные сплавы         
  • Коэффициент теплового расширения сплавов железа/никель в зависимости от процентного содержания никеля. Ярко выраженный минимум при концентрации никеля 36 %
Инварные сплавы; Магнитно-твердые сплавы; Сплавы с заданными свойствами упругости; Сверхпроводящие сплавы; Термобиметаллы; ГОСТ 10994-74; Магнитно-мягкий сплав; Inovco; NILO; 42Н; Магнитно-мягкие материалы; Магнитно-твердые материалы; Сплавы прецизионные; Магнитно-твёрдые сплавы; Магнитно-твёрдые материалы; Прецизионный сплав
(от франц. précision - точность)

металлические сплавы с особыми физическими свойствами (магнитными, электрическими, тепловыми, упругими) или редким сочетанием физических, физико-химических и механических свойств, уровень которых в значительной степени обусловлен точностью химического состава, отсутствием вредных примесей, соответствующей структурой сплава. Большинство П. с. создано на основе Fe, Ni, Со, Cu, Nb. К П. с. относится ряд сплавов с аномалией свойств, среди которых особое место занимают сплавы с очень малым изменением физических параметров при изменении температуры, магнитного, электрического поля, механических нагрузок (например, Инвар, Элинвар, Манганин, Константан, Перминвар). Важное практическое значение имеют и сплавы, характеризующиеся, наоборот, весьма большим изменением физических параметров при изменении внешних условий (например, Пермаллой, Алюмель, Хромель, Копель, Магнитострикционные материалы, пружинные сплавы, термобиметаллы).

К П. с. относятся также сплавы, обладающие Сверхпроводимостью, сплавы с заданным значением физических параметров (например, Ковар, Платинит, Фернико), в том числе сплавы с разнообразным сочетанием свойств и сплавы, сохраняющие требуемые свойства в условиях агрессивных сред, вибрации, электрического разряда, радиации, глубокого вакуума и т.д.

П. с. - незаменимые материалы при изготовлении узлов особо чувствительных приборов и установок, уникальной экспериментальной и малогабаритной аппаратуры, различного рода датчиков, преобразователей энергии. Они применяются также в бытовой технике, например в телевизорах, радиоприёмниках, часах и т.д. П. с. являются основой прогресса точного приборостроения, автоматики и др. отраслей техники; изготовляются преимущественно в виде тонкой ленты и проволоки, а также в виде поковок, листов, прутков, полиметаллической проволоки и ленты, монокристаллов. Для достижения наивысшего уровня свойств П. с. необходимы, как правило, особые способы выплавки, деформирования, специальные режимы термической обработки, качественная отделка поверхности. П. с. требуют высокой культуры эксплуатации.

Лит.: Прецизионные сплавы. Справочник, М., 1974.

Магнитно-твёрдые сплавы         
  • Коэффициент теплового расширения сплавов железа/никель в зависимости от процентного содержания никеля. Ярко выраженный минимум при концентрации никеля 36 %
Инварные сплавы; Магнитно-твердые сплавы; Сплавы с заданными свойствами упругости; Сверхпроводящие сплавы; Термобиметаллы; ГОСТ 10994-74; Магнитно-мягкий сплав; Inovco; NILO; 42Н; Магнитно-мягкие материалы; Магнитно-твердые материалы; Сплавы прецизионные; Магнитно-твёрдые сплавы; Магнитно-твёрдые материалы; Прецизионный сплав

основной вид магнитно-твёрдых материалов (См. Магнитно-твёрдые материалы).

Википедия

Сплав

Сплав — макроскопически однородный металлический материал, состоящий из смеси двух или большего числа химических элементов с преобладанием металлических компонентов.

Сплавы состоят из основы (одного или нескольких металлов), малых добавок специально вводимых в сплав легирующих и модифицирующих элементов, а также из неудалённых примесей (природных, технологических и случайных).

Сплавы являются одним из основных конструкционных материалов. Среди них наибольшее значение имеют сплавы на основе железа и алюминия. В технике применяется более 5 тыс. сплавов.

Что такое Ни<font color="red">о</font>биевые спл<font color="red">а</font>вы - определение